compressional force F, its length remains unchanged. The coefficient of volume expansion, of the material of the rod, is (nearly) equal to: [12 April 2019 II]

(a)
$$9F/(\pi r^2 YT)$$
 (b) $6F/(\pi r^2 YT)$

(c) $3F/(\pi r^2 YT)$ (d) $F/(3\pi r^2 YT)$

or $L\alpha(\Delta T) = \frac{FL}{\Delta Y}$

3. (c) $\Delta_{\text{temp}} = \Delta_{\text{force}}$

 $\therefore \quad \alpha = \frac{FL}{AYT} = \frac{F}{\pi r^2 YT}$

 $r=3\alpha=\frac{3F}{\pi r^2 YT}$.